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ON J~RBULENJ B~~N~~RY LAYER STRU~JUR~~ 

V.V. SYCHW andVIK. v.SYCHEV 

FLOW in the turbulent boundary layer (BL) with Reynolds number R-too is studied by a 
joining asymptotic expansion method. A three-layered asymptotic BL structure is set up, which 
includes, besides the viscous boundary region and the velocity defect region, an intermediate 
region in which a balance of inertia forces , and pressure and turbulent friction forces takes 
place and which is responsible for flow separation under the influence of a disadvantageous 
pressure gradient. 

A study of turbulent BL structure, based on the asymptotic analysis of an open set of 
Reynolds equations, has been the subject of a number of investigations. Early papers /I, 21 
essentially contain the known elements of this type of analysis. The paper by Yajnik /3/ was 
the first attempt at a systematic approach to the problem of construct@q joined asymptotic 
expansions for averaged flow functions in a turbulent BL as R *m. Further developments 
were made in /4-6/. In all these studies the structure of the turbulent BL, either with or 
without a pressure gradient a was established as a double layer: an inner (boundary1 region 
and an outer region. In the first of these, flow is defined by a known Prandtl wall law 
which states that the SW of friction stresses caused by viscous action and turbulent pulses 
of velocity remains invariant across the whole zone. Plow in the outer region is described 
by the l&m&n velocity defect law and represents a slightly perturbed potential flow close to 
the solfd surface. 

The possibility of a formal joining of the solutions for these regions is often seen as 
proof of the existence of an overlap region between them and a logarithmic velocity profile. 
The joining conditions also make it possible to findthatthe relative thickness of the 
velocity defect region is of the order of lilnR, and that the thickness of the layer at the 
wall is of the oxder of 1nRlR 131. 

A more detailed examination of flow in the boundary region carried out below, however, 
shows that the two-layexed flow diagram does not take place in reality. *is aiagrm does 
not contain a region where the internal friction forces , the pressure gradient and inertia 
forces have the same order of magnitude as R-m, i.e. just that region which, according to 
the Prandtl definition, is itself a BL. This, in particular, excludes the possibility of 
explaining the flow separation under a disadvantageous pressure gradient. Indeed, the flow 
in the velocity defect region to a first approximation is not susceptible to the action of 
friction forces and the flow in the nrtll-law region is not subject to the pressure gradient 
(since, for this to be so, the latter must have an unpracticably large values of the order of 
R/insR). 

In /7/# based on experimental observations, a law of the wake was introduced into the 
consideration, successfully linking the laws of the wall and the velocity defect. By this 
law the velocity profile in the BL is essentially dependent on the pressure gradient and 
changes so that, as it approaches the separation point, it adopts the shape of a profile in 
the wake. The law of the wake can therefore be considered as proof that the BL structure is 
not two-layered, i.e. the overlap region of the wall and velocity defect law does not exist 
in reality (even for flow without a pressure gradient) and, consequently, it is essential to 
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introduce at least one more intermediate zone. 
The construction of an asymptotic turbulent BL theory by introducing such a zone was 

attempted in /8/. The use of a logarithmic law for the behaviour of the velocity defect as a 
joining condition, in essence, signified a return to the scheme in /3/, since the average 
longitudinal flow velocity in the intermediate zone was also, in its main term, equal to the 
potential flow velocity at the outer BL boundary. 

1. Let us being the flow analysis in the boundary layer with an examination of the 
boundary region. In accordance with the law of the wall the defining parameter here is the 

dynamic velocity u* = I/g@ where &is the friction at the wall and p is the density of 
the environment. The ratio of the characteristic value of this velocity u9* to the character- 
istic velocity of the external inviscid flow &, as usual, we will consider as the small 
parameter of problem E = u,*lU,J Taking the dimenionless averaged values of the longitudinal 
component of the velocity vector and friction in the boundary regions to be values of the order 
of e and ea respectively , it is possible to determine the ordersofmagnitude of various terms 
of Reynolds equations. 

Let u and v be dimensionless averaged values of the velocity vector components along the 
Ox and Oy axes of a rectangular Cartesian system of coordinate connected to the plane smooth 
surface of solids y = 0, and let p and Zll be dimensionless values of the average pressure 
drop and turbulent stresses, L is the characteristic size of solid chosen as the unit of 
length measurement. We will write the Reynolds equations for planar flow in the form 

ug fv !5+.$=+(2%+2cj+2$+2.$_ 

v.2 -+I; RT~ 

The layer at the wall is characterized by the fact that viscous and turbulent friction 
stresses possess an identical order of magnitude here, i.e. R’c%L/~~-z~~. Using the estimates 
stated above for the values of the longitudinal component of the velocity vector u and the 
friction, we find that the thickness of the viscous layer at the wall is 

6 = 0 (I/(&)) (1.2) 
and the corresponding terms in the first equation of the angular momentum (1.1) 

R-Vulay~ N az,, / ab, - ~3~2 

We will assume that the dimensionless longitudinal oressure gradient in the boundary layer 
is a quantity of the order of unity; the contribution of inertial terms, for 
based on the estimates presented above will be of theorderof a'. Therefore, 
EqS.U.1) it is possible to write the following asymptotic expansions of the 
for flow in the region at the wall of the boundary layer as 

u=e ( ul++~ua++~ua++~u4++ . . . ) 
“=$ ( v,++&b++~v2+&v*++...) 
P=P1++ePInep,++e*p,++... 

T ( 1 
.y=@ z,++.&-zl+ +$&++$T,++...) 

7xx=epnl+ + . . ., vvr = ego,+ + . . . 

The independent variables of the order of unity here are 

z,g+ = eRy (4.4) 
The apperance in (1.3) of terms containing ine is caused by pressure changes due to the 

displacing action of the boundary layer, as will be shown below. (We recallthatforsimplicity 
the case of flow over a plane surface is examined; in the case of flow around a curvilinear 
wall the term of order e will still appear in the expansion for pressure.) 

As a result of substituting (1.3) and (1.4) into (1.1) we arrive at the following system 

example u-au 1 ax, 
using the initial 
unknown functions 

(1.3) 

of relations: 

(1.5) 
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2g+_!LL+2&=2K+u1ti?!& + + ul+% 
aY+ 

aps+ dsI+ 
e-.-..-=-. 

ask+ 8Uh-* 

ar/+ dy+ ’ d*:+.= 
dY+ 

0, k=1.2,3,4 

On the surface of the solid yf = 0 the functions must satisfy the adhesion condition. 
From this system it is possible to determine the behaviour of the functions occurring in 

it as y+400. Thus, for functions of the first approximation as y+e 00 as usual, let us 
assume 

ul+=%(X)Iny+$-fl(sf+...,z,+=g,(x)--h,(s)ly+5... ($4 
Here &(x) isthedimensionless friction on the wall, and h,(x) and fI (x) are certain 

derived functions. In the second of these expansions we used the assumption that the influence 
of viscosity on the magnitude of the internal friction in the inner part of the subboundary 
layer decreases in inverse proportion to y+. This assumption corresponds to the logarithmic 
law, due to which, as is well-known, the value of the longitudinal component u outside the 
viscous sublayer becomes a value of the order of unity and, besides this, here the internal 
limit of this function is non-zero. 

Considering Eqs.Cl.5) for the second and third approximations it is possible to establish 
that 

Ta* =pr+'(x)y+ +...,rs+ =pz+'(s)y++...(y+~oo) (1.7) 

and, as a result of substituting (1.6) into the right-hand side of the equation for functions 
of the fourth approximation in (1.5) we obtain 

z$+ = & (X)hr'(z)y+ In2 ys + 0 (y" In y+) (y'-f 00) (4.8) 

Based on the asymptotic representations (1.6), (1.7) for rr* and r$* as ys* on we 
find that the corresponding terms of expansion (1.3) for rXsr become of the same order for 
y+ = 0 (e3R). The fourth term of this expansion here will be of the same order of smallness if 
e In (e*R) = 0 (1). We note that the value of the velocity component u, in accordance with (1.3), 
and (1.6), thenbecomesavalueoftheorderofunitywhere y" = O(eSR). Therefore, itis possible to 
set 

E = 1 lln(e3R) = lt'ln R + . . . (f.9) 

without Zoss of generality, which corresponds to the result obtained in /3/, mentioned above. 
Thus we obtain that expansion (1.3) for rzy ceases to be correct in a region with 

relative transverse dimensions J?RG or e * (in accordance with (1.2)).‘ 
NOW let us make the assumption that the regions of inapplicability of the expansions for 

u and zrar coincide, i.e. the terms of expansion (1.3) for u are equal in order of magnitude 
also where y+ = 0 (e3R) or y = 0 (e"). Essentially this assumption implicitly postulates the 
presence of a certain additional dependence between the flow functions, apart from the system 
of Eqs.cl.5). Such a dependence, however , is much less restrictive than any condition of the 
closure of this set (since it can be non-local). 

The main terms of the asymptotic representations uZ+, us' and u4+ as y+-too must take 
the form 

us* =h,(x)y+lny+ -t..., u,'=h,(r)y+lny+ $_ . . . (1.10) 

u&* = h*(z) y+ ln3y+ -i- . . . 

where ha@& h,(z) and h4f5) are arbitrary functions. Since the asymptotic representations 
(1.10) and (1.7), (1.81 are in line with each other and on the basis of Eqs.(l.S), we can 
determine the following terms in expressions (1.7), which will be -h,(x) In y+ and -h,(x)Iny' 
respectively. 

2. We consider the flow region with independent variables 

I, Y = y / ea = y+ ! (esR) (2.1) 
Based on asymptotic expansions (1.3) and expressions (1.6)-(1.101 and also using the 

condition for the solutions to match for regions y+ = O(i) and Y = 0 (1), we can write the 
expansions for flow parameters in region Y = O(1) in the form 

24 = u1 + au, -j- 0 (e2 In e), v = e2ul + e%, + (2.2) 
0 (e* In e), p = p, + ea In epa f 0 (ea) 

r Xy = e%, + e3ra f 0 (e* In e) 
z P= E%~ i- 0 (es), zyy = e%, + 0 (e3) 

Substituting these expansions into the Reynolds Eqs.(l.l), rewritten in variables (2.11, 
we obtain a set of boundary layer equations for the main terms of (2.2) in the form 

(3.3) 
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ay= ’ 

_%+_!!+o 

The boundary conditions which must be satisfied by functions (2.3) for Y = 0 are 
defined by the conditions for matching with the solution for the viscous subboundary layer. 
Based on (1.3), (1.6)-(1.10) and (2.1) we find that 

P1 (x) = A+ (.2), Vl b, 0) = 0; u, = h (4 + 0 (Y) 

Tl = g, (z) + [PI' (4 + h, @)hl @)I y + . . . (Y* 0) 

For the functions of the subsequent approximation in expansions (2.2) from matching with 
the solution in the region y+= O(1) it follows that 

Pa (x) = P%+ (4, va h, 0) = 0 
u, = h, (s)ln Y + fl (x) + 0 (Yln Y) 
za = Zh,(z)h,’ (z) Y In Y + 0 (Y) (Y* 0) 

3. The boundary conditions as Y+CQ are defined by the conditions for matching with 
the solution for the velocity defect region. Therefore it is essential to examine flow in 
this region. The longitudinal component of the velocity vector u is equal here to the first 
approximation of the velocity U,(X) of the outer potential flow and the turbulent friction 
only affects its value in the second approximation. The relative thickness of this region is, 
as is well-known a value of the order of E /3/. Therefore, it is necessary to introduce 

x,y* = y/E = EY (3.1) 
as independent variables of the order of unity. 

The averaged flow functions are presented in the form of expansions 

u = 77, + EU~ + e2 In e U, + e2U, + . . . 
u = &VI + 9 In eV, + e2V, + . . . 
p = P, + 9 lneP, + .9Ps + . . . 

TX2 = eaTI + E’ In ET, + eST, + . . . 
T xX = m, + . . . , ‘cyy = &28, + . . . 

Substituting these expansions together with (3.1) into Eqs.Cl.1) we obtain 

P,’ = p*’ (I) = - u, (5) U,’ (x), v, = - U,’ (x) Y*, v, = H,(J) 

UJJ,+U,+U~'y*++ z+s=o 

U.'U,+U,~-U.'y*~tH~~+~=~ 

U.'U+J.~-u,'y*~$U,~ +v+s= 

S+$, +0 

aPs a& 
(U,'" -UJJ,?Y*+ F = ay* 

(3.2) 

(3.3) 

In the region where y = O(9) a non-linearity of the initial equations appears and so 
it must be assumed that expansions (3.2), like expansions (1.3), become invalid here. This 
means that, as y* --t 0 

u, = F,(x*)/y* + . . . (3.4) 
We substitute this expression into (3.3) and require that 

T, =G,(z) +..., y*-+o (3.5) 

i.e. the matching condition for the main term of the expansion of the function zxu asY+oo 
and y*+O has been satisfied. Then for the function F,(x) we obtain the equation UZ,' + 
2U,'F, = 0 and by integrating we find that 

F, = c, / Uee (x) (3.6) 
where c is an arbitrary constant. From the equation of continuity in (3.3) it follows that 

V, = -F,‘(z) In y* + H*(x) + . . . . y* --to (3.7) 

To carry out the matching of expansions (2.2) and (3.2) for the function v we rewrite 
(3.7) in terms of the variable Y: 

V, = -F,’ (z) In e - F,’ (5) In Y + . . . 

and since the term of order $lne in expansion (2.2) for v is not present,itis essential 
to set 
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If, (2) 2 I*‘,’ (.x) --‘c,u<.’ (2) i u, a (.c) (3.X) 

The asymptotic matching for the following terms of expansions (3.2), achieved using 
expressions (3.41, (3.6)-(3.8) and Eqs.f3.3), makes it possible to establish that as y*+O 

u,=+&..., iJa=-~lny*+~+__ 

T::=y + ,.., T,=-- FInI/*+ 9 f ... 

G2 = F,F,' - 3U,'F, - U,,F,' 
G, = -G, - F,U;' - F,(F,' -Ha) -33F,U,' - F,'U, 

Here the fWiCtiOnS Fa (x), P,(X), Ha(X) and also G1(x) in (3.5) remain arbitrary, 
For the functions ml> Vl, %r in expansions (2.2) we also obtain the following representa- 

tions as Y,+ 00: 

ul=Us(x) + * -+$.]*Y _t_+$$.+,_ 

v~=-u~(X)Y--FE;'(X)1nY j-&(X)- _!?!$&y.+ 

F<(s) - Fd (3) 
Y -f- . . . 

r,==&(z)- FlnY + w-c .*. 

In addition, from the conditions for matching the pressure function it follows that 

p, (X) = 8% (X) = PO w p* (3) = PB (2) 

Thus, relations (3.4)-(3.6) obtained above lead to the establishment of a new law for the 
behaviour of the flow functions at the outer boundary of the non-linear zone and the inner 
boundary of the velocity defect region. 

In conclusion we note that when the usual boundary conditions at the outer boundary of 
the turbulent BL are satisfied, in accordance with which (for functions from (3.2)) 

U, (X, 00) = T, (X, m)== IT, (x, oo) = IG, (x, 00) = 0 
(n = 1,3,3) 

on the basis of Eqs.(3.3) , it is possible to obtain 

u, = -P, (lx)/ CT, (I) + . . ., u, = -VnWe” (t) y*% - 
PsO (4 / u, (2) -t . * . 

V,=H,O(x))+..., P, = 'Is (VJJ," - Ue'S) p f 
Ps" (x) + * . . (Y* -+ Q)) 

If we now turn to the initial variables X,y, using these expressions and also (3.2) and 
(3.3), it turns out that in the outer flow region the terms of the second and third approxi- 
mations (for u,u,p) are of the order of s?lne and ea. In the case of flow near a flat 
plate, when u.(X) = 1, p*(z) =O,the terms of order eala e will not be present, in accord- 
ance with (3.81, (3.31, (3.21, and consequently no terms containing Ine will occur in 
expansions (1.3) or' (2.2) either. 

Thus, analysis of the turbulent boundary layer on a smooth surface as R-too demonstrates 
that, contrary to the results of previous investigations /3-6/, it is three-layer. Furthermore 
the non-linear flow region, situated between the viscous boundary and velocity defect regions, 
is described by an open set of boundary-layer equations expressing the balance of inertia, 
pressure and turbulent friction forces. The relative thickness of this region is a value of 
the order of E% = O(1 l WR). Its existence is not connected with the pressure gradient, 
although this has a much stronger influence and leads to such important consequencesasflow 
separation in this region (see /Q, lo/). 
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THE STRONG INJECTION OF GAS INTO A SUPERSONIC FLOW 
WITH TURBULENT MIXING* 

1.1. VIGDOROVICH 

A strong distributed injection of gas into a supersonic stream through a 
permeable plate is examined when the boundary layer (BL) is pressed back 
from a streamlined surface and the blown gas in the inviscid boundary 
region is separated from the oncoming stream by a turbulent mixing layer 
(ML). A disconnection criterion for the turbulent BL on injection and 
a similarity rule reflecting the fact that the flow over the plate is 
dependent on conditions at the end of the permeable section are formulated. 
Universal curves for the pressure distribution and injection-layer depth 
are given and flow force characteristics are calculated. The applicability 
of the solution derived from a simpler flow model, in which the ML is 
replaced by a contact breaking surface, is established, with a correspond- 
ing correction for turublent mixing. 

1. Formulation of the problem. We examine supersonic flow over a smooth plate 
positioned at zero angle of attack to the oncoming stream with the injection of gas through 
a permeable section of its surface. Gas isblownin evenly, perpendicular to the plate with 

constant flow rate qm and gas temperature at the wall T,. 
Let us assume that, as a result of injection, the BL is 
pressed back from the entire permeable surface so that 
the gasblowninto the inviscid boundary region 1 (Fig.1) 
is separated from the outer flow by the turbulent ML which 
develops from the start of the permeable section. This 
flow diagram corresponds to experimental data, for example 
/l, 2/. 

Fig.1 
We denote by E and S the oreder of relative ML thick- 

ness and the inviscid part of the blowing layer. Since 
the BL is pressed back as a result of the blowing, the transverse component of the flow of 
mass in the boundary region in order of magnitude is not less than intheML. Thelongitudinal 
component, however, is not greater than in the ML. Hence, and from the continuity equation 
it follows that 6 > 0 (E). 

Let us examine the non-viscous part of the inflation layer. We shall use dimensionless 
variables. We will assign Cartesian coordinates to the length 1 of the permeable section, 

pressureto P,,density to m,P,f(kT,). velocity components to I/kT,lm, and the flow function 

to 1P, I/m, I (kT,,J, where kisBoltsmann's constant, andmwis the molecular weight of the gas 
blown in; the parameters of the unperturbed oncoming flow are denoted by the subscript oo. In 
accordance with theconceptof a "thin layer" /2, 3/ we will assume that s<l. At measured 
*Prfkl.Matem.MeJchan.,51,4,600-610,198f 


